Sixth-order Weighted Essentially Nonoscillatory Schemes Based on Exponential Polynomials

نویسندگان

  • Youngsoo Ha
  • Changho Kim
  • Hyoseon Yang
  • Jungho Yoon
چکیده

The aim of this study is to develop a novel sixth-order weighted essentially non-oscillatory (WENO) finite difference scheme. To design new WENO weights, we present two important measurements: a discontinuity detector (at the cell boundary) and a smoothness indicator. The interpolation method is implemented by using exponential polynomials with tension parameters such that they can be tuned to the characteristics of the given data, yielding better approximation near steep gradients without spurious oscillations, compared to the WENO schemes based on algebraic polynomials at lower computational cost. A detailed analysis is performed to verify that the proposed scheme provides the required convergence order of accuracy. Some numerical experiments are presented and compared with other sixth-order WENO schemes to demonstrate the new algorithm’s ability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ENO and WENO Schemes

The weighted essentially nonoscillatory (WENO) schemes, based on the successful essentially nonoscillatory (ENO) schemes with additional advantages, are a popular class of high-order accurate numerical methods for hyperbolic partial differential equations (PDEs) and other convection-dominated problems. The main advantage of such schemes is their capability to achieve arbitrarily high-order form...

متن کامل

Maximum-principle-satisfying High Order Finite Volume Weighted Essentially Nonoscillatory Schemes for Convection-diffusion Equations

To easily generalize the maximum-principle-satisfying schemes for scalar conservation laws in [X. Zhang and C.-W. Shu, J. Comput. Phys., 229 (2010), pp. 3091–3120] to convection diffusion equations, we propose a nonconventional high order finite volume weighted essentially nonoscillatory (WENO) scheme which can be proved maximum-principle-satisfying. Two-dimensional extensions are straightforwa...

متن کامل

A Weighted Essentially Nonoscillatory, Large Time-Step Scheme for Hamilton-Jacobi Equations

We investigate the application of weighted essentially nonoscillatory (WENO) reconstructions to a class of semi-Lagrangian schemes for first order time-dependent Hamilton–Jacobi equations. In particular, we derive a general form of the scheme, study sufficient conditions for its convergence with high-order reconstructions, and perform numerical tests to study its efficiency. In addition, we pro...

متن کامل

Compact Reconstruction Schemes with Weighted ENO Limiting for Hyperbolic Conservation Laws

The simulation of turbulent compressible flows requires an algorithm with high accuracy and spectral resolution to capture different length scales, as well as nonoscillatory behavior across discontinuities like shock waves. Compact schemes have the desired resolution properties and thus, coupled with a nonoscillatory limiter, are ideal candidates for the numerical solution of such flows. A clas...

متن کامل

A NUMERICAL STUDY OF A PATHOLOGICAL EXAMPLE OF p-SYSTEM∗

In this paper, we consider several high-order schemes in one space dimension. In particular, we compare the second-order relaxation ( << 1) or “relaxed” ( = 0) schemes of Jin and Xin [Comm. Pure Appl. Math., 48 (1995), pp. 235–277] with the second-order Lax–Friedrichs scheme of Nessyahu and Tadmor [J. Comp. Phys., 87 (1990), pp. 408–463] and with higher-order essentially nonoscillatory (ENO) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2016